Samstag, 6. Oktober 2012

Community-based exercise program

CMAJ. 2002 October 29; 167(9): 997–1004.
PMCID: PMC134175

Community-based exercise program reduces risk factors for falls in 65- to 75-year-old women with osteoporosis: randomized controlled trial  - Carter et al






Abstract

Background

Exercise programs improve balance, strength and agility in elderly people and thus may prevent falls. However, specific exercise programs that might be widely used in the community and that might be “prescribed” by physicians, especially for patients with osteoporosis, have not been evaluated. We conducted a randomized controlled trial of such a program designed specifically for women with osteoporosis.

Methods

We identified women 65 to 75 years of age in whom osteoporosis had been diagnosed by dual-energy X-ray absorptiometry in our hospital between 1996 and 2000 and who were not engaged in regular weekly programs of moderate or hard exercise. Women who agreed to participate were randomly assigned to participate in a twice-weekly exercise class or to not participate in the class. We measured baseline data and, 20 weeks later, changes in static balance (by dynamic posturography), dynamic balance (by a timed figure-eight run) and knee extension strength (by dynamometry).

Results

Of 93 women who began the trial, 80 completed it. Before adjustment for covariates, the intervention group tended to have greater, although nonsignificant, improvements in static balance (mean difference 4.8%, 95% confidence interval [CI] –1.3% to 11.0%), dynamic balance (mean difference 3.3%, 95% CI –1.7% to 8.4%) and knee extension strength (mean difference 7.8%, 95% CI –5.4% to 21.0%). Mean crude changes in the static balance score were –0.85 (95% CI –2.91 to 1.21) for the control group and 1.40 (95% CI –0.66 to 3.46) for the intervention group. Mean crude changes in figure-eight velocity (dynamic balance) were 0.08 (95% CI 0.02 to 0.14) m/s for the control group and 0.14 (95% CI 0.08 to 0.20) m/s for the intervention group. For knee extension strength, mean changes were –0.58 (95% CI –3.02 to 1.81) kg/m for the control group and 1.03 (95% CI –1.31 to 3.34) kg/m for the intervention group. After adjustment for age, physical activity and years of estrogen use, the improvement in dynamic balance was 4.9% greater for the intervention group than for the control group (p = 0.044). After adjustment for physical activity, cognitive status and number of fractures ever, the improvement in knee extension strength was 12.8% greater for the intervention group than for the control group (p = 0.047). The intervention group also had a 6.3% greater improvement in static balance after adjustment for rheumatoid arthritis and osteoarthritis, but this difference was not significant (p = 0.06).

Interpretation

Relative to controls, participants in the exercise program experienced improvements in dynamic balance and strength, both important determinants of risk for falls, particularly in older women with osteoporosis.

In people with osteoporosis, exercise may reduce the risk of fracture by its effect on maintenance of bone mass and, probably more important, by improving postural stability and thus decreasing rates of falling.1 Numerous studies have examined the effect of exercise on bone mineral density in women with normal bone mass. Meta-analyses have revealed that either aerobic or resistance training can confer a 1% to 2% advantage relative to control participants, largely by slowing the loss of bone mineral.2,3,4,5,6 Few exercise interventions have been undertaken in women with osteoporosis,7 but even the limited data available make it clear that antiresorptive therapy augments bone mineral more effectively than does exercise alone.8,9

There is, however, increasing evidence that specific exercise interventions can reduce risk factors for falls and actual falls in older people.10,11,12 Further investigation in women with osteoporosis is therefore warranted, as these subjects are at particular risk of fracture if they fall. The response to exercise programs could very well be similar for women with osteoporosis and those with normal bone health, but this assumption needs to be tested. There may be disease-related, physiological, or biomechanical and posture-related differences between women with osteoporosis and the women in whom exercise and risk factors for falls have been studied previously.

In a randomized controlled trial of 10 weeks of physiotherapy in 53 women with vertebral osteoporosis and back pain, Malmros and colleagues13 showed that static balance (measured by computerized posturography) improved significantly in the treatment group. In another randomized clinical trial, physiotherapy-directed exercise in 30 patients with osteoporosis (not defined) significantly improved static balance measured by functional reach and quadriceps strength determined with an isokinetic dynamometer.14 Although both studies showed that exercise programs could improve known risk factor profiles for falls, they were limited by the small number of subjects and their short duration (maximum 12 weeks). Neither study measured both static and dynamic balance, both of which are predictors of falls.10,11,12,13,15 Lastly, both studies employed hospital-based physiotherapists as instructors and thus could not be widely used for patients living in the community.

A large number of tools are available to measure risk factors for falls, such as static and dynamic balance and strength.10 A sophisticated tool for measuring static balance, the Equitest computerized posturography platform (Neurocom International, Clackamas, Ore.), is considered by many the gold standard for measuring sway.16 It is reliable and is designed to distinguish the contributions of the visual, proprioceptive and vestibular systems in maintaining balance,17 but the device measures sway only in the anteroposterior plane, even though most falls occur to the side. In contrast, a measure of dynamic balance, the figure-eight run,18 which has previously been used in older people19,20 is simple to perform and does not require special equipment or training. Quadriceps strength is another independent predictor of both falls21 and fracture risk,10,22 and it can be measured reliably, simply and cheaply with a strain gauge dynamometer.21

The Osteoporosis Program at the BC Women's Hospital and Health Centre developed Osteofit, a community-centre-based exercise program suitable for people with osteoporosis.23 The program aims to improve participants' static and dynamic balance, strengthen key muscle groups and ameliorate quality of life. Since its inception in 1998, over 500 women have participated in the program in over 50 community centres. Similar programs exist in the United States, Australia and Europe, but to our knowledge there have been no reports of the efficacy of any readily accessible community-based exercise programs on risk factors for falls in women with osteoporosis.

We tested the primary hypothesis that a 20-week Osteofit exercise program, provided in a community centre setting with classes of 12 participants per certified instructor, would improve measures of balance and knee extension strength in community-dwelling women aged 65 to 75 years in whom osteoporosis had been diagnosed by dual-energy X-ray absorptiometry. Our secondary hypothesis was that the intervention would also improve quality of life24,25 as measured by an osteoporosis-specific quality-of-life index.26 A planned interim report of the trends observed after 10 weeks of intervention has been published elsewhere.27


Quelle und Full Text:   http://www.ncbi.nlm.nih.gov/pmc/articles/PMC134175/


Full Text / pdf:  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC134175/pdf/20021029s00016p997.pdf



JÖRG LINDER AKTIV-TRAINING  - www.aktiv-training.de

Mauerbergstraße 110
76534 Baden-Baden-Neuweier
Tel.: 07223 / 8004699
Mobil: 0177 / 4977232
Mail: info@aktiv-training.de
Fax: 07223 / 8005271   
Prävention: www.preventex.de
Mobility-Walking: http://mobility-walking.blogspot.com
 
Social Health / Individuelles Gesundheitstraining / Individuelle Betreuung:
http://www.aktiv-training.de/social-health_aktiv-training.html










Keine Kommentare:

Kommentar veröffentlichen